XJIPC OpenIR  > 多语种信息技术研究室
Restricted Boltzmann Machine-Based Approaches for Link Prediction in Dynamic Networks
Li, TS (Li, Taisong)[ 1,2 ]; Wang, B (Wang, Bing)[ 1 ]; Jiang, YS (Jiang, Yasong)[ 1 ]; Zhang, Y (Zhang, Yan)[ 1 ]; Yan, YH (Yan, Yonghong)[ 1,2,3 ]
2018
发表期刊IEEE ACCESS
ISSN2169-3536
卷号6期号:6页码:29940-29951
摘要

Link prediction in dynamic networks aims to predict edges according to historical linkage status. It is inherently difficult because of the linear/non-linear transformation of underlying structures. The problem of efficiently performing dynamic link inference is extremely challenging due to the scale of networks and different evolving patterns. Most previous approaches for link prediction are based on members' similarity and supervised learning methods. However, research work on investigating hidden patterns of dynamic social networks is rarely conducted. In this paper, we propose a novel framework that incorporates a deep learning method, i.e., temporal restricted Boltzmann machine, and a machine learning approach, i.e., gradient boosting decision tree. The proposed model is capable of modeling each link's evolving patterns. We also propose a novel transformation for input matrix, which significantly reduces the computational complexity and makes our algorithm scalable to large networks. Extensive experiments demonstrate that the proposed method outperforms the existing state-of-the-art algorithms on real-world dynamic networks.

关键词Link Prediction Social Network Analysis Deep Learning
DOI10.1109/ACCESS.2018.2840054
收录类别SCI
WOS记录号WOS:000435522600042
引用统计
文献类型期刊论文
条目标识符http://ir.xjipc.cas.cn/handle/365002/5637
专题多语种信息技术研究室
作者单位1.Chinese Acad Sci, Inst Acoust, Key Lab Speech Acoust & Content Understanding, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Dept Phys, Beijing 101408, Peoples R China
3.Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Xinjiang Key Lab Minor Speech & Language Informat, Urumqi 830011, Peoples R China
推荐引用方式
GB/T 7714
Li, TS ,Wang, B ,Jiang, YS ,et al. Restricted Boltzmann Machine-Based Approaches for Link Prediction in Dynamic Networks[J]. IEEE ACCESS,2018,6(6):29940-29951.
APA Li, TS ,Wang, B ,Jiang, YS ,Zhang, Y ,&Yan, YH .(2018).Restricted Boltzmann Machine-Based Approaches for Link Prediction in Dynamic Networks.IEEE ACCESS,6(6),29940-29951.
MLA Li, TS ,et al."Restricted Boltzmann Machine-Based Approaches for Link Prediction in Dynamic Networks".IEEE ACCESS 6.6(2018):29940-29951.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Restricted Boltzmann(5378KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, TS (Li, Taisong)[ 1,2 ]]的文章
[Wang, B (Wang, Bing)[ 1 ]]的文章
[Jiang, YS (Jiang, Yasong)[ 1 ]]的文章
百度学术
百度学术中相似的文章
[Li, TS (Li, Taisong)[ 1,2 ]]的文章
[Wang, B (Wang, Bing)[ 1 ]]的文章
[Jiang, YS (Jiang, Yasong)[ 1 ]]的文章
必应学术
必应学术中相似的文章
[Li, TS (Li, Taisong)[ 1,2 ]]的文章
[Wang, B (Wang, Bing)[ 1 ]]的文章
[Jiang, YS (Jiang, Yasong)[ 1 ]]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Restricted Boltzmann Machine-Based Approaches for Link Prediction in Dynamic Networks.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。