XJIPC OpenIR  > 资源化学研究室
煤化工副产物双环戊二烯高附加值化及生物质原料催化转化
张立波
学位类型博士
导师王天富
2018-05-30
学位授予单位中国科学院大学
学位授予地点北京
学位专业材料物理与化学
关键词双环戊二烯 氢甲酰化 氧化裂解 杂多酸 纤维素材料 有机碱 葡萄糖异构
摘要

在我国“多煤少油”的资源现状大背景下,积极扩展煤化工副产物的高附加值化具有重要意义。同时鉴于石化能源的不可再生性,扩展生物质能源的原料来源以及催化转化具有战略意义。基于此,本论文在重要的煤化工副产物双环戊二烯氢甲酰化高附加值以及生物质原料的提取转化方面做了一些具体的工作。第一部分,采用浸渍法制备二氧化硅负载的钴-铑双金属催化剂,并用于重要的煤化工副产物双环戊二烯(Dicyclopentadiene,DCPD)氢甲酰化制备三环癸烷单醛(Monoformyltricyclodecenes,MFTD)和三环癸烷二醛(Diformyltricyclodecanes,DFTD)的反应。考察并确认了DCPD-MFTD-DFTD反应路径,发现了MFTD-DFTD决速步,而且实现了大批量的制备MFTD。此外,DCPD-DFTD反应过程中不同阶段回收的催化剂,和不同压力预处理的新鲜制备的催化剂应用于MFTD-DFTD氢甲酰化过程中。通过动态监测反应体系合成气压力的变化,结合反应启动时间的差异,首次观测到了氢甲酰化催化剂活性和结构的关系。第二部分,采用共沉淀法制备了以纳米粉体氧化物为载体的超低含量(0.006%,w/w)钴-铑双金属催化剂,并用于MFTD氢甲酰化制备DFTD的反应。考察了氧化物载体的种类和金属Co/Rh的负载比例对低金属负载量催化剂氢甲酰化反应活性的影响。最终确定纳米粉体氧化锌为最佳催化剂载体,Rh为主催化剂。同时也考察了催化剂的最佳使用温度,拟合了不同温度下反应动力学参数,并进行了重复使用情况的检测。结果表明该低负载量金属的催化剂具有很好的循环性能。本工作对拓展氢甲酰化催化剂的载体选择范围,减少金属催化剂的用量,降低催化剂成本等具有重要的实际意义。第三部分,针对DCPD氢甲酰化产物DFTD,无催化剂和超低温的条件下实现了氧化裂解,得到了C6-C8的烷烃和烯烃。从工程生产的角度,系统地考察了温度、氧气压力及含量、溶剂效应及水分含量以及原料浓度对DFTD氧化裂解产物的影响。根据实验过程中所观测到的现象,提出了DFTD氧化裂解的反应路径,并拟合了各个中间反应的动力学参数。本部分的研究内容继续拓展了DCPD高附加值化的途径,制备出C6-C8的烷烃和烯烃可作为汽油添加剂。这对煤化工产物的继续高附加值化具有重要的意义。第四部分,采用三种典型的固体杂多酸(磷钨酸、磷钼酸、硅钨酸)作为催化剂,在GVL/H2O 溶剂体系内对原木木粉中木质素进行了脱除,获得了富含纤维素的基底材料。进而系统考察了杂多酸的种类、反应时间和反应温度对杂多酸脱除木质素后基底的得率和木质素的脱除率的影响,确定了最佳的脱除木质素条件。形貌表征研究发现,杂多酸在有效地脱除原木木粉中的木质素的同时,对木材中的其他组分几乎没有影响,对于木基材料的改性和应用意义重大。进一步优化的酶降解的实验表明,脱除木质素后的纤维素基底材料可以在相当温和的条件下被酶降解为葡萄糖,可以作为葡萄糖的上游原料。生物质基能源发展的前提就是初始原料的大规模提取,本部分内容提供了一条在原木中直接提取纤维素的路径,并拓展了酶降解生产葡萄糖的上游原料来源,具有很强的现实意义。第五部分,制备了SBA-15负载的六种硅烷偶联剂类有机碱催化剂,用于催化葡萄糖异构制备果糖的反应。通过对比均相和非均相有机碱催化葡萄糖异构制备果糖的活性,定性地讨论了硅烷偶联剂类有机碱结构和催化性能的关系。后续系统地考察了温度、催化剂的用量、葡萄糖的浓度对异构反应的影响,拟合得到本催化体系中葡萄糖转化活化能为30.38KJ/mol,低于目前文献报道的数值。重复使用的结果表明,该催化剂在重复使用的过程中发生失活。结合FTIR、XRD和BET等表征手段,认为水和碱共同作用导致SBA-15分子筛的孔道发生坍塌,同时反应过程中产生的副产物吸附在载体表面也是催化剂失活的一个重要原因。本部分内容对理解硅烷偶联剂类有机碱催化剂异构葡萄糖制备果糖提供了很多更深的理解,具有一定的意义。

其他摘要

The background of China's energy structure is “much more coal than oil”, thus it is of great significance to high-valued existed coal-industry byproducts. Meanwhile, in term of the non-renewability of fossil fuel, broaden the source and further catalytic conversion of biomass is of strategic significance. Based on this, the present thesis focus on an important coal-industry byproduct dicyclopentadiene conversion by hydroformylation, and extraction and transformation of cellulose from real biomass.In the first part, SiO2 supported Co-Rh bimetallic catalysts were prepared by impregnation method and used for dicyclopentadiene (DCPD) hydroformylation to monoformyltricyclodecenes (MFTD) and diformyltricyclodecanes (DFTD). The reaction route of DCPD-MFTD-DFTD, also the rate-determining step of MFTD-DFTD were investigated and conformed. Also, the mass production of MFTD is realized. Besides, the catalysts recovered at different reaction stages of DCPD-DFTD, also fresh catalysts treated by different syngas pressures, were used for MFTD hydroformylation reaction. By detecting moment pressures, the relationship between the catalytic performance and the structure of the catalysts was observed. In the second part, nanopowder supported super lower loading (0.006%, w/w) Co-Rh bimetallic catalysts were prepared by co-precipitation method and used for MFTD hydroformylation to DFTD. The types of carrier and the ratio of Co/Rh were investigated, and ZnO nanopowder with Rh as main catalyst metal were determined. Then optimum temperature, dynamic parameters and reusability were tested. Results reveal the nanopowder supported super lower Co-Rh bimetallic catalysts have good cycle performance. This work will be of great importance to broaden the hydroformylation catalysts support range, also lower the cost of metal catalysts.In the third part, further high valued of DFTD was conducted, and C6-C8 alkenes and alkenes were obtained by DFTD oxidative cracking under ultra-low temperature and catalyst-free conditions. Mainly in the perspective of industry, some important factors, such as the oxygen pressure and contents, the effects of solvent and water contents, also the raw material loading were investigated. Meanwhile, the reaction route was proposed and dynamics fitting and analyzation also were performed. This work firstly demonstrated the oxidative cracking of DFTD, broaden the application of DCPD and will have significant and positive influence on the coal chemical industry.In the fourth part, three widely-available heteropoly acids (HPAs), silicotungstic, phosphotungstic and phosphomolybdic acid, were used as catalysts in GVL/H2O green solvent system to degrade lignin and obtain cellulose-enriched material from raw wood. HPAs concentration, reaction time and temperature were investigated to obtain the optimal lignin removal effect. Furthermore, cellulose-enriched material were characterized by SEM and FTIR, showing that HPAs are able to effectively degrade lignin while having little effect on overall tissue structure, which is important for wood-based materials. Finally, digestibility experiments demonstrated that thus obtained cellulose-enriched material is suitable for used as starting material for sugar production from wood. This work provides a direct strategy to obtain cellulose and sugar from real biomass.In the last part, six SBA-15 supported solid organic base catalysts were prepared and used for the isomerization of glucose to fructose in water. The relationships between the catalytic performance and the structure of organic base were initial discussed. Then, the effects of temperature, catalysts dosage, glucose concentration were optimized and the activation energy of 30.38 kJ/mol for the reaction is determined, which is lower than previous papers. During the reuse test, catalysts deactivation were observed. According to the characterization of FTIR, XRD and BET, the combined action of water and supported organic base is regarded to lead to the collapse of SBA-15 porous structure. Also the byproduct during the reaction that adsorbed onto catalysts surface confirmed by FTIR. This work provides some deeper understand on glucose isomerization by organic bases.

页数140
文献类型学位论文
条目标识符http://ir.xjipc.cas.cn/handle/365002/5426
专题资源化学研究室
推荐引用方式
GB/T 7714
张立波. 煤化工副产物双环戊二烯高附加值化及生物质原料催化转化[D]. 北京. 中国科学院大学,2018.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
煤化工副产物双环戊二烯高附加值化及生物质(4827KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[张立波]的文章
百度学术
百度学术中相似的文章
[张立波]的文章
必应学术
必应学术中相似的文章
[张立波]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 煤化工副产物双环戊二烯高附加值化及生物质原料催化转化.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。