XJIPC OpenIR  > 多语种信息技术研究室
Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition
Huang, YA (Huang, Yu-An); You, ZH (You, Zhu-Hong); Chen, X (Chen, Xing); Yan, GY (Yan, Gui-Ying)
2016
发表期刊BMC SYSTEMS BIOLOGY
卷号10期号:增刊: 4
摘要

Background: Protein-protein interactions (PPIs) are essential to most biological processes. Since bioscience has entered into the era of genome and proteome, there is a growing demand for the knowledge about PPI network. High-throughput biological technologies can be used to identify new PPIs, but they are expensive, time-consuming, and tedious. Therefore, computational methods for predicting PPIs have an important role. For the past years, an increasing number of computational methods such as protein structure-based approaches have been proposed for predicting PPIs. The major limitation in principle of these methods lies in the prior information of the protein to infer PPIs. Therefore, it is of much significance to develop computational methods which only use the information of protein amino acids sequence. Results: Here, we report a highly efficient approach for predicting PPIs. The main improvements come from the use of a novel protein sequence representation by combining continuous wavelet descriptor and Chou's pseudo amino acid composition (PseAAC), and from adopting weighted sparse representation based classifier (WSRC). This method, cross-validated on the PPIs datasets of Saccharomyces cerevisiae, Human and H. pylori, achieves an excellent results with accuracies as high as 92.50%, 95.54% and 84.28% respectively, significantly better than previously proposed methods. Extensive experiments are performed to compare the proposed method with state-of-the-art Support Vector Machine (SVM) classifier. Conclusions: The outstanding results yield by our model that the proposed feature extraction method combing two kinds of descriptors have strong expression ability and are expected to provide comprehensive and effective information for machine learning-based classification models. In addition, the prediction performance in the comparison experiments shows the well cooperation between the combined feature and WSRC. Thus, the proposed method is a very efficient method to predict PPIs and may be a useful supplementary tool for future proteomics studies.

关键词Protein-protein Interactions Protein Sequence Continuous Wavelet Transform Sparse Representation Based Classifier
DOI10.1186/s12918-016-0360-6
收录类别SCI
WOS记录号WOS:000392598000010
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.xjipc.cas.cn/handle/365002/5122
专题多语种信息技术研究室
作者单位1.Hong Kong Polytech Univ, Dept Comp, Hong Hom, Hong Kong, Peoples R China
2.Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
3.China Univ Min & Technol, Sch Informat & Elect Engn, Xuzhou 221116, Peoples R China
4.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100010, Peoples R China
推荐引用方式
GB/T 7714
Huang, YA ,You, ZH ,Chen, X ,et al. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition[J]. BMC SYSTEMS BIOLOGY,2016,10(增刊: 4).
APA Huang, YA ,You, ZH ,Chen, X ,&Yan, GY .(2016).Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition.BMC SYSTEMS BIOLOGY,10(增刊: 4).
MLA Huang, YA ,et al."Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition".BMC SYSTEMS BIOLOGY 10.增刊: 4(2016).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Improved protein-pro(1228KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, YA (Huang, Yu-An)]的文章
[You, ZH (You, Zhu-Hong)]的文章
[Chen, X (Chen, Xing)]的文章
百度学术
百度学术中相似的文章
[Huang, YA (Huang, Yu-An)]的文章
[You, ZH (You, Zhu-Hong)]的文章
[Chen, X (Chen, Xing)]的文章
必应学术
必应学术中相似的文章
[Huang, YA (Huang, Yu-An)]的文章
[You, ZH (You, Zhu-Hong)]的文章
[Chen, X (Chen, Xing)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。