XJIPC OpenIR  > 多语种信息技术研究室
DRMDA: deep representations-based miRNA-disease association prediction
Chen, X (Chen, Xing); Gong, Y (Gong, Yao); Zhang, DH (Zhang, De-Hong); You, ZH (You, Zhu-Hong); Li, ZW (Li, Zheng-Wei)
2018
发表期刊JOURNAL OF CELLULAR AND MOLECULAR MEDICINE
ISSN1582-4934
卷号22期号:1页码:472-485
摘要

Recently, microRNAs (miRNAs) are confirmed to be important molecules within many crucial biological processes and therefore related to various complex human diseases. However, previous methods of predicting miRNA-disease associations have their own deficiencies. Under this circumstance, we developed a prediction method called deep representations-based miRNA-disease association (DRMDA) prediction. The original miRNA-disease association data were extracted from HDMM database. Meanwhile, stacked auto-encoder, greedy layer-wise unsupervised pre-training algorithm and support vector machine were implemented to predict potential associations. We compared DRMDA with five previous classical prediction models (HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA) in global leave-one-out cross-validation (LOOCV), local LOOCV and fivefold cross-validation, respectively. The AUCs achieved by DRMDA were 0.9177, 08339 and 0.9156 +/- 0.0006 in the three tests above, respectively. In further case studies, we predicted the top 50 potential miRNAs for colon neoplasms, lymphoma and prostate neoplasms, and 88%, 90% and 86% of the predicted miRNA can be verified by experimental evidence, respectively. In conclusion, DRMDA is a promising prediction method which could identify potential and novel miRNA-disease associations.

关键词Mirna Disease Mirna-disease Association Deep Representation Auto-encoder
DOI10.1111/jcmm.13336
收录类别SCI
WOS记录号WOS:000418759200042
引用统计
文献类型期刊论文
条目标识符http://ir.xjipc.cas.cn/handle/365002/5114
专题多语种信息技术研究室
作者单位1.China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Peoples R China
2.Peking Univ, Sch Life Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi, Peoples R China
4.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou, Peoples R China
推荐引用方式
GB/T 7714
Chen, X ,Gong, Y ,Zhang, DH ,et al. DRMDA: deep representations-based miRNA-disease association prediction[J]. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE,2018,22(1):472-485.
APA Chen, X ,Gong, Y ,Zhang, DH ,You, ZH ,&Li, ZW .(2018).DRMDA: deep representations-based miRNA-disease association prediction.JOURNAL OF CELLULAR AND MOLECULAR MEDICINE,22(1),472-485.
MLA Chen, X ,et al."DRMDA: deep representations-based miRNA-disease association prediction".JOURNAL OF CELLULAR AND MOLECULAR MEDICINE 22.1(2018):472-485.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
DRMDA deep represent(541KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, X (Chen, Xing)]的文章
[Gong, Y (Gong, Yao)]的文章
[Zhang, DH (Zhang, De-Hong)]的文章
百度学术
百度学术中相似的文章
[Chen, X (Chen, Xing)]的文章
[Gong, Y (Gong, Yao)]的文章
[Zhang, DH (Zhang, De-Hong)]的文章
必应学术
必应学术中相似的文章
[Chen, X (Chen, Xing)]的文章
[Gong, Y (Gong, Yao)]的文章
[Zhang, DH (Zhang, De-Hong)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: DRMDA deep representations-based miRNA-disease association prediction.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。