XJIPC OpenIR  > 多语种信息技术研究室
类自动车牌识别轨迹数据的伴随车辆组挖掘
王保全; 蒋同海; 周喜; 马博; 赵凡
2017
Source Publication计算机应用
ISSN1001-9081
Volume37Issue:11Pages:3064-3068+3094
Abstract

自动车牌识别(ANPR)数据比私人全球定位系统(GPS)数据更易获得,且包含更有用的信息,但是相对成熟的针对GPS轨迹数据挖掘伴随车辆组方法并不适用于自动车牌识别数据,现有的少量自动车牌识别数据伴随车辆组挖掘算法存在重视轨迹相似而忽视时间因素的缺陷,因此提出一种基于轨迹特征的聚类方法挖掘伴随车辆组。针对自动车牌识别数据中采样点固定而采样时间不定的特点,通过轨迹中共现的次数判定两个对象构成伴随模式。该共现定义引入豪斯多夫距离,综合考虑轨迹的地点、方向和时间特征,旨在挖掘数据中采样点不同但采样点距离近且轨迹相似的伴随车辆组,以此提高伴随车辆组挖掘效率。实验结果表明,所提方法较现有方法更能有效挖掘伴随车辆组,识别非伴随模式数据,效率提升了近两倍。

Keyword自动车牌识别轨迹数据 伴随车辆组 基于密度的空间聚类 豪斯多夫距离 共现
Indexed ByCSCD
CSCD IDCSCD:6111477
Citation statistics
Document Type期刊论文
Identifierhttp://ir.xjipc.cas.cn/handle/365002/5062
Collection多语种信息技术研究室
Affiliation1.中国科学院新疆理化技术研究所
2.中国科学院大学
3.新疆理化技术研究所新疆民族语音语言信息处理实验室
Recommended Citation
GB/T 7714
王保全,蒋同海,周喜,等. 类自动车牌识别轨迹数据的伴随车辆组挖掘[J]. 计算机应用,2017,37(11):3064-3068+3094.
APA 王保全,蒋同海,周喜,马博,&赵凡.(2017).类自动车牌识别轨迹数据的伴随车辆组挖掘.计算机应用,37(11),3064-3068+3094.
MLA 王保全,et al."类自动车牌识别轨迹数据的伴随车辆组挖掘".计算机应用 37.11(2017):3064-3068+3094.
Files in This Item:
File Name/Size DocType Version Access License
类自动车牌识别轨迹数据的伴随车辆组挖掘.(897KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[王保全]'s Articles
[蒋同海]'s Articles
[周喜]'s Articles
Baidu academic
Similar articles in Baidu academic
[王保全]'s Articles
[蒋同海]'s Articles
[周喜]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[王保全]'s Articles
[蒋同海]'s Articles
[周喜]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 类自动车牌识别轨迹数据的伴随车辆组挖掘.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.