XJIPC OpenIR  > 多语种信息技术研究室
Highly Efficient Framework for Predicting Interactions Between Proteins
You, ZH (You, Zhu-Hong); Zhou, MC (Zhou, MengChu); Luo, X (Luo, Xin); Li, S (Li, Shuai)
2017
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号47期号:3页码:731-743
摘要

Protein-protein interactions (PPIs) play a central role in many biological processes. Although a large amount of human PPI data has been generated by high-throughput experimental techniques, they are very limited compared to the estimated 130 000 protein interactions in humans. Hence, automatic methods for human PPI-detection are highly desired. This work proposes a novel framework, i. e., Low-rank approximationkernel Extreme Learning Machine (LELM), for detecting human PPI from a protein's primary sequences automatically. It has three main steps: 1) mapping each protein sequence into a matrix built on all kinds of adjacent amino acids; 2) applying the low-rank approximation model to the obtained matrix to solve its lowest rank representation, which reflects its true subspace structures; and 3) utilizing a powerful kernel extreme learning machine to predict the probability for PPI based on this lowest rank representation. Experimental results on a large-scale human PPI dataset demonstrate that the proposed LELM has significant advantages in accuracy and efficiency over the state-of-art approaches. Hence, this work establishes a new and effective way for the automatic detection of PPI.

关键词Big Data Feature Extraction Kernel Extreme Learning Machine (K-elm) Low-rank Approximation (Lra) Protein-protein Interactions (Ppis) Support Vector Machine (Svm)
DOI10.1109/TCYB.2016.2524994
收录类别SCI
WOS记录号WOS:000396395400016
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.xjipc.cas.cn/handle/365002/4743
专题多语种信息技术研究室
作者单位1.Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
2.Macau Univ Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China
3.New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
4.Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
5.Hong Kong Polytech Univ, Dept Comp, Hong Kong 999077, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
You, ZH ,Zhou, MC ,Luo, X ,et al. Highly Efficient Framework for Predicting Interactions Between Proteins[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(3):731-743.
APA You, ZH ,Zhou, MC ,Luo, X ,&Li, S .(2017).Highly Efficient Framework for Predicting Interactions Between Proteins.IEEE TRANSACTIONS ON CYBERNETICS,47(3),731-743.
MLA You, ZH ,et al."Highly Efficient Framework for Predicting Interactions Between Proteins".IEEE TRANSACTIONS ON CYBERNETICS 47.3(2017):731-743.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Highly Efficient Fra(3031KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[You, ZH (You, Zhu-Hong)]的文章
[Zhou, MC (Zhou, MengChu)]的文章
[Luo, X (Luo, Xin)]的文章
百度学术
百度学术中相似的文章
[You, ZH (You, Zhu-Hong)]的文章
[Zhou, MC (Zhou, MengChu)]的文章
[Luo, X (Luo, Xin)]的文章
必应学术
必应学术中相似的文章
[You, ZH (You, Zhu-Hong)]的文章
[Zhou, MC (Zhou, MengChu)]的文章
[Luo, X (Luo, Xin)]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Highly Efficient Framework for Predicting Interactions Between Proteins.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。