XJIPC OpenIR  > 材料物理与化学研究室
InGaAs低维量子结构光电材料辐射效应研究
玛丽娅·黑尼
学位类型博士
导师郭旗
2016-05-26
学位授予单位中国科学院大学
学位授予地点北京
学位专业微电子学与固体电子学
关键词Ingaas量子阱 量子点 辐射效应 位移损伤
摘要

半导体量子阱和超晶格概念的提出,是半导体物理和半导体器件研究领域中划时代的飞跃。在低维量子结构中,由于量子限制效应的存在使系统能级产生分立,具有不同于体材料的态密度函数,产生了许多独特的光学性质和电学性质;还可以通过调整组分、层厚和掺杂等所谓能带工程进行人工改性。它不仅在物理上提供了一个低维的研究系统,各种量子限制效应的发现也拓宽了物理学研究领域,促进了新型量子器件的开发和研制,显示出半导体低维结构广阔的应用前景。随着空间技术的发展,卫星、飞船等航天器和空间载荷对电子器件性能提出了越来越高的要求,如激光器、太阳电池等光电器件的转换效率、耐辐照性能的提高以及重量的减轻。而随着新型半导体材料与技术的发展,低维化合物半导体材料应用于激光器、光电探测器和高效太阳电池等光电器件势在必行。然而对于应用在空间载荷中的光电器件而言,空间高能粒子的辐射效应会导致器件性能衰退甚至失效,对航天器的长期可靠运行造成严重危害。对于InGaAs系低维量子结构的光电器件在应用于空间环境之前,也必须考虑其在轨任务周期中辐射环境带来的风险,并采取相应的抗辐射加固措施。而这些措施只能在充分了解InGaAs系低维量子结构材料与器件辐射损伤效应与物理机制的前提下进行。同时,抗辐射加固措施也只有针对相应的损伤物理机制采取工艺和结构上的对策,才能取得好的效果。对光电材料和器件而言,高能粒子入射引起的位移损伤被认为是器件性能退化的致命因素。目前对于应用于空间辐射环境的器件位移损伤效应研究的位移损伤剂量法相对等效注量法来说操作方便,所需要的试验数据较少,近年来得到了广泛关注。然而研究发现,考察由位移损伤引起的参数损伤系数:非电离能量损失(Non-ionizing Energy Loss , NIEL)在GaAs材料中,模拟仿真计算的结果与试验所得并不完全相符,有待于进一步分析研究;GaAs系低维化合物半导体材料中第三种元素的引入、特殊的量子结构以及量子效应的引入对其辐射效应的影响研究不够充分;体材料的NIEL理论值对其三元化合物低维结构薄膜材料的位移损伤效应研究的适用性有待研究。本文以不同制备工艺条件下生长的不同结构量子阱、量子点材料为研究对象,开展了60Co-γ、电子、质子的一系列的辐照试验,研究了InGaAs系低维光电材料的辐射效应及损伤规律;基于试验结果,借助位移损伤剂量法比较了不同射线的辐射损伤,讨论了体材料的NIEL值在InGaAs系低维光电材料模拟辐照试验中的适用性,最后对于实验结果中出现的InGaAs系低维光电材料辐致发光增强进行了进一步讨论。研究结果表明:(1)样品生长工艺条件对于其抗辐射性能的影响较大,MOCVD法生长的量子阱样品缺陷数量多,异质结界面平整度差,直接影响材料的性能以及抗辐射能力;MBE生长样品晶格完整度高,界面平整,量子限制效应强,抗辐射损伤能力更强。(2)从结构上来讲,相同生长参数的多层量子阱辐射损伤比单层量子阱严重,并且与量子阱层数成正比;由于量子阱结构的载流子平面扩散性好于量子点结构,量子阱中的非辐射复合中心更容易俘获载流子,点状结构中的载流子受限特性能够降低载流子与非辐射复合中心的复合概率, 因此量子点材料的耐辐照性能明显优于量子阱;(3)不同结构的低维光电材料在等效位移损伤剂量下损伤规律不同;由于辐致缺陷能级在材料内部产生了辅助跃迁通道,包含低密度量子点的样品在低注量下出现了辐致发光增强的现象;(4)低维结构的InGaAs系三元化合物光电材料与器件在不同粒子不同能量辐照条件下的等效性有待进一步研究,体材料的NIEL理论值并不完全适用于其低维结构薄膜材料。

其他摘要

Low dimensional semiconductor materials such as quantum wells, quantum wires and quantum dots, which is achieved through band engineering , have been attracted much attention during the last decade due to their unique optical, electrical, magnetically and mechanical properties, such as quantum confinement effect, quantum interference effect and their potential applications in nano-electronic and nano-optoelectronic device and integrated circuit applications. The demand for on orbit power supply of satellites and spacecraft is becoming more and higher due to increased payloads and improved performance, such as the conversion efficiency, radiation resistance and weight of solar cells. With the rapid development of new semiconductor materials and structures, it is imperative that low-dimensional compound semiconductor material used in solar cells. It is necessary to fully study the space radiation effects and analyze the radiation damage mechanism of low dimensional photoelectric materials applied in solar cells and other optoelectronic devices. It’s essential to explore the evaluation method of space radiation effects in solar cells with new material and structure.However, space radiation environment poses a significant threat to the stable operation of the device, long life and highly reliable operation of the solar cells, lasers and other optoelectronic devices applied in space payloads. The displacement damage caused by high-energy particles incident is considered to be a fatal factor in performance degradation in optoelectronic materials and devices. In order to well evaluation the space radiation effects of low-dimensional InGaAs opto-electronic materials and devices, it’s essential to investigate the radiation effects and machnisim of low-dimensional InGaAs opto-electronic materials.We investigated the radiation effects of low-dimensional InGaAs opto-electronic materials through irradiation tests with various energy & fluence of different particles by means of the Displacement Damage Dose method which is used in the evaluation of on-orbit space radiation effects of single-junction Si and GaAs solar cell. We also discussed the applicability of GaAs’s NIEL value in low-dimensional InGaAs materials in ground test of space radiation effect based on experimental results. Further discussion targeted to radiation-induced photoluminescence enhancement has been given too.Experimental results show that: (1) Effect of sample growth process for its anti-radiation properties can not be ignored. Metal Organic Chemical Vapor Deposition (MOCVD) is a key technology in growing thin-films but introduce defects during the processing reduce the radiation hardness of samples. Epitaxial layers grown by MBE have more flat interface of hetero-junctions, good crystal quality and strong quantum confinement, lead to better radiation resistance. (2) Exciton localization in the quantum dots due to three-dimensional confinement reduces the probability of carrier non-radiative recombination at radiation induced defect centers if damage is created outside the Quantum Dot region. Quantum Dots are much more resistant to radiation induced damage than Quantum wells. (3) We observed increasement in photoluminescence intensities with low radiation doses. A better understanding of the physical processes responsible for this finding was reducing of phonon bottleneck effect due to radiation induced phonon assisted transitions channel. (4) The equivalent of low-dimensional InGaAs opto-electronic materials under the different particles irradiations is pending further study. The NIEL value of bulk materials is inapplicable to low-dimensional InGaAs materials.

文献类型学位论文
条目标识符http://ir.xjipc.cas.cn/handle/365002/4709
专题材料物理与化学研究室
作者单位中国科学院新疆理化技术研究所
推荐引用方式
GB/T 7714
玛丽娅·黑尼. InGaAs低维量子结构光电材料辐射效应研究[D]. 北京. 中国科学院大学,2016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
InGaAs低维量子结构光电材料辐射效应(3593KB)学位论文 开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[玛丽娅·黑尼]的文章
百度学术
百度学术中相似的文章
[玛丽娅·黑尼]的文章
必应学术
必应学术中相似的文章
[玛丽娅·黑尼]的文章
相关权益政策
暂无数据
收藏/分享
文件名: InGaAs低维量子结构光电材料辐射效应研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。